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Abstract: In this paper, we study the initial and boundary value problems of higher order Kirchhoff
equation with higer-order memory term. Firstly, under approprate assumptions, we use Galerkin
finite element method and a priori estimation to prove the existence and uniqueness of the global
solution of this kind of equation in detail; and use contraction function menthod to prove the
asymptotics of the solution semigroup, and then we get the existence of the global attractor ; in the
end, we discuss the exponential attractor of a class of equations, and the finite fractal dimension of
the global attractor is obtained.

1. Introduction

In this paper, we study the initial boundary value problems for the following higher order
Kirchhoff equations with decaying memory terms

et (-8)u -+ {774 ) (-8) u+ ] g (5)(-4)"u, (t-5)ds-+ T (u) = h(x),
u=0, il4:0, i=12,---m-1 xel,t>0, 1)
avl

u(x,0)=u,(x),u,(x,0)=u,(x), xeQ.

Where Q) is a bounded domain in R*with smooth boundaryI",vis the outer normal vector on
boundary ', m>1u (x—-t),t>0 is a prescribed past history of u,, g(s)is the memory

core, h(x)is an external force, ¢(+)is a nonnegative real valued function, f (u)is a nonlinear source

term.

In 1883, Kirchhoff established the Kirchhoff equation for describing the cross-section motion of
elastic rod,Since then, there have been many in-depth studies on Kirchhoff type equations, and
various rich results have been obtained. Yang Zhijian and Cheng Jianling™proved the long-time
behavior of the solution of the following Kirchhoff type

equation un—M(||Vu||2)Au—Aut+g(x,u)+h(ut): f(x) with strong damping term,With two
different methords,it proves that the related continuous semigroup S(t) posseses in phase

space X =(H2 N H;)x Hga global attractor.,At the end of the paper,an example is shown,which

indicates the existence of nonlinear functions. Guoguang Lin, Penghui Lv and Ruijin Lou™ studied
the dynamic behavior of a class of generalized nonlinear Kirchhoff Boussinesq type equations, and
proved the existence of exponential attractors and inertial manifolds. HuaChen and Gongwei Liuf®
studied the initial boundary value problem of nonlinear Kirchhoff type wave equation with damping
and memory terms. Under certain conditions, the existence of local and global existence and
exponential decay were obtained. When the weak damping term was nonlinear, the energy
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increased exponentially with time; when the weak damping term was linear, the energy blew up.
there have been a lot of impressive literatures [4-6].

With the deepening of research, scholars began to study the related properties of more
generalized Kirchhoff type equations, such as the related properties of higher order Kirchhoff type
equations Ye Yaojun and Tao Xiangxing [ studied the initial boundary value problem for a class of
higher order Kirchhoff type equations with nonlinear dissipative term. By constructing stable sets,
they discussed the existence of global solutions to the problem, and used Nakao's difference
inequality to establish the decay estimate of solution energy. And they proved that under the
condition of positive initial energy, the solution will blow up in finite time, and the life interval of
the solution is estimated. Lin Guoguang and Li zhuoxi ' studied the initial boundary value problem
for a class of higher order Kirchhoff type equations with nonlinear nonlocal source term and strong
damping term. Firstly, the existence and uniqueness of the solution were proved by galerlin finite
element method,Furthermore, a family of global attractors is obtained. The Hausdorff dimension
and fractal dimension of the global attractor family are finite. More literatures on higher order
Kirchhoff type equations can be found in[9-11]. At present, there are few studies on the higher
order Kirchhoff equation. In this paper, we will study the more characteristic Kirchhoff equation
with decay memory term, and discuss the global attractor and exponential attractor of this kind of
equation.

In order to study smoothly, we first define all kinds of spaces and symbols,

Without losing its generality, The inner product and norm of definition Lz(Q) are respectively
(e+)and |« .In particular
H =L*(Q).V, = H7 (Q)=H"(Q)NH,(Q),
The corresponding inner product and norm are:
(u,v)Vm :(V”‘u,vmv), u . :”Vmu
Next, we give the history space:
E=L? (R";V, )= {77: R* 5>V_ J'OOOy(s)”n(s)”\z/m ds < oo},
Obviously, the space is a Hilbert space with inner-product and norm
(7:6), =, (s)([, V"1 (x5)97¢ (x,5)dx)ds, [nf} = [ e (s)|n ()], ds.
Vil <[vV™u |2 Wwhere 4, is the

first eigenvalue of —A. For brevity, we use the same letter C denote different positive constants,
andC () denote positive constants depending on the quantities appearing in the parenthesis.

Assume that
(I) The nonlinear function f e C*(R) satisfies the following conditions

2’

At the same time, there is a general Poincare inequality: A1| ? £|

(Fl)limmzo;

5‘4)00 52

(FZ)‘Iim inf st (s)-pF(s) >0,where0< p<2;

(Fy)|f (s)|<c, (1+Ts|) Wherec, >0;

andF (s)= [ (z)dr.

(IN)peC'(R*),¢'20,4(0)=¢,>0.

(II) Memory kernel function g(+)eC*(R*), g'(s)<0<g(s),g()=0,VseR" andu(s)=
—g'(s) satisfies
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(Gl),ueCl(IT)ﬂ Ll(R+),,u'(S)SOS,u(S),‘v’Se R,

(Gz)uO:J':/,z(s)ds >0, 4'(8)+u(s)<0,VseR", uis a positive constants.

Equation (1) is transformed into a definite autonomous dynamical system. Here we follow the
presentation by[12, 13],accordingly,one defines a new variable 7that corresponds to the relative

displacement history. That is,
n=n' (x,s):j:ut(x,t—r)dr, (x,5)eQxR",t20.(2)
By formal differentiation we have
n(%8) ==, (%5)+u(xt), (x,5)eQxR",t>0. (3)
Therefore problem becomes:

Uy +(— )u+¢( ) u+I "' (s)ds+ f (u)=h(x),

=1, +U, (X1,5)e QxR xR, (X,t)eQx[O,oo).
With boundary condition:

d'u an
u=—--=0, (x,t)eI'xR", n= =0, xel, t=0. (6
Py ( )e X n= av e (5)

(4)

And initial conditions:

u(x,0)=u,(x), u (x,0)=u,(x), 7°(x,s)=m,(xs), n'(x,0)=0. (6)

2. Existence and Uniqueness of Solutions

Let X =V, xH xE, z, = (Uy, Uy, 7, ), 2 = 2(t) = (u(t),u (1), 7' (s)).

Lemma2.1 Let(I)—(1ll)be establishedandheH, z,e X, & is an appropriate small normal
number,then z determined by problems(4)-(6)satisfies the following properties:

Ju, +&ulf +[vu 2+||77t||2 < Rf, (t=T,), (7)
<R, .(8)

Proof:Letv=u, +&u ,Takmg H -inner product byv in(4),we get
1d
oIl -

e[V [+ (F ()0 ([ a(s)(-4)" 7 () e ) = (),
By (I)—(III),Poincare inequality and Holder Inequality,we have
IQuf (u)dx = pI u)dx— p1||u|| ,01)|Q|,;€\E|j p, >0, (10)

Z'” dr

V"u

an j (s)ds+2] F( dva -V + 22 Juf
9)

g2(V™u v™u

eo [V Yol 2 e v 2 o™ o(s)es,

(jo u(s)(-A) nt(x,s)ds,v)=(jo ()(=4)" 7" (x 8)ds.u, + 2 ”

’

M ”77 ” 2t
H

2 - S +
*,(13)

(hv)<[niv| <3
Substituting (10)-(13)into(9),we get
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& (04K, (0225 () 247 10

where

H, (6) =V + &2 Julf — e |vmalf + Iovmuz¢(s)ds+||nt||; +2[ F(u)dx,

and
w:z[% e (- em ol ] o (s) s [1+%}||vmullz]
+ O +260] F () o

Select the appropriate small £ > 0 ,then

m. |12 2
Hl(t)ZK‘l(”\/”2+ v"u +||,7t||E)_c(pl)|Q|,
and
There is a sufficient small normal number ¢, > 0,such that
K, (t)=>aH, (1),
(14)become

%H1(t)+ oyH, (t) < 26C(p,)|Q+24" ||h||2  (15)

According to Gronwall inequality, we get
2:C )|+ 24" ||

H,(t)<H,(0)e + , (16)

1
Therefore, there are normal numbers R and T, > 0,such that

IV +||V’“u||2 +||17t||z <RZ (t2T,). (17)
Taking H inner product by u, in(4),we obtain

[ UH meo B AP
2dt{” Jo+ [T g(s)ds ] +2f F (u)ax—2(h,u }+||v u +?||,7t||Ego, (18)
Integrating(18) over (O t) and by(16),there is a normal number R, ,such that
o
Lemma 2.11is proved.
Theorem2.2(Existence and uniqueness of Solutions) Let(1)—(111) be established,andh e H,

<R,, (19)

z,e X ,Then problem (4)-(6) admits a unique
solutionz € L” ([0,+%0), X ) ,and z = (u(t),u, (t),' (s)) depends continuously on initial dataz, in

X.

Proof: The existence of global solution is proved by Galerkin method.see[8, 9, 14].

Stepl.Construct approximate solution

Let(—A)2m o, = "o Where 4, is the eigenvalue of —A with homogeneous Dirichlet boundary
onQ, @ is the characteristic function corresponding to eigenvalue A, ,According to the eigenvalue
theory, o, m,,---,, constitutes the standard orthogonal basis ofH. Fixed T >0 ,For a given

integer vVl e N ,Let B andQ, denote the projection operator from the following space to its subspace,
respectively:
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span{w, @,,---, @} =V, span{c,,¢,, -, } < Li(R*;Vm),
Let the approximate solution of problem(4)

be u, (t):z|:uiI (t)a, Zn,, g; where u, (t),7; (s) is determined by the following
nonlinear ordi:;ry differential equatlons
(um+(—A)m ult+¢(||vmu|||2)( "u [ {(s)ds+ f (u), @ ):(h(x),a)i), o0
(m+n46). =(u.g), =121,

meets the initial conditions z,, =(u,y,U,,,7,) Whenl — +w0, 7, —z,in X . From the basic
theory of ordinary differential equation, we know that the approximate solution u, (t) m (S) exists
n (0,t).

Step2.Prior estimation
Because it is necessary to prove the existence of solutions in X, (20) Multiply both ends by

Uy (t)+eu, (t) .and  sumover i let v, (t)=u,(t)+eu, (t) ,According to lemma 2.1the prior
estimation of solutions in X spaces is obtained:
2 m, |12 t[2 2
ulF +[v"u + ], <R @2)
We have z =(u;,v;,7 ) is uniformly bounded in L ([0, +); X ).

Step3.Limit process
because{u, } is bounded on V, , {u, } has subsequences strongly convergent tou on H ,So there are

subsequences still represented by {ul} ,such that

{u, } almost everywhere convergesto u inH.
According to a priori estimate, we have

((_A)m Uy, @ ):(Vl’ﬂ‘lma)i )—(gu“/'{lma)i ),
so((—A)m Uy, @ )—)(V,Z{”a)i )—(gu,ﬂima)i ) weak*in L [0, +o0).
By(u,, o )—(u,@ ) weak*inL”[0,+o),

then (U, ):%(ult,a)i )= (Uy, @, ) in D'[0,+w) ,where D'[0,+x) is a conjugate space of
D [0, +oo) infinitely differentiable spaces.

( [ u(s)(-a)" nf(s)ds,a)i)—>( J; #(s)(=4)" 7" ()5, | wealctinL*[0,420).
By the assumption(1),(f (u),@ ) > (f(u),e, ) weak*inL"[0,+wx).

and,

[pIvmal J-auon)=sffvuf ) (o) u.-a)" o)
(Va0 u oA > 1o uf ) () w )

weak*in L*[0,+o0).
In particular, z,, >z, weak in X . For all iand whenl — +oo ,According to the density of
substrate @,,®,,- -, ®,, -, we get

m
2

V™u
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vy,

Ja)u [ u( (s)ds+ f (1), @) = (h(x).@), Ve eV,

(ultt + (_A)m U, + ¢(
Therefore, the existence of weak solutions to problem(4) (6)is proved.
ForvteR, letz =(u;(t),u, (t),7 (s)),(i=12)be two solutions of problem(4)-(6) as shown

above corresponding to initial data
2 =(Up, U}, 775 (s)) Thenw(t) =u, (t) =, (t), & (s) =i (s) -3 (s) satisfifies

Wit +(_A)m W, +¢(”Vmu1”2)(_A)m U, _¢(”Vmu2”2)(_A)m U,
+J' &' (x,s)ds+ f (u,)—f(u,)=0, 22)
& :—fs +W,,

(w(0),w,(0).&°(5)) = (ug. s ) = (ug v’ 5 )

Taking H -inner product by w, in (22) and making use of assumptions(1)—(11l),we have
df1 1 1 .

Rt R S A e R

(0= (vl )) (v mw )| o{]vouf )-of vl ) ((-a)" ww) @)

~(F(0)= F () ) <2 [V [ oc (R ([vwf +]wF).
then

Lol o [7ol e ]+ v < (R) I +o
Applying the Gronwall inequality to(24)

o+ o [V e < ( +: o). 2o

(25) implies thatﬁ?‘l‘ETJEP,(u,ut,n‘)depends continuously on initial data z,in X ,and hence, the

V™wi

V"u

vm

) e

solution of
Problem is unique.
Theorem 2.2 is proven.

3. Global Attractor

Lemma3.1™ LetH : R* — R*be an absolutely continuous function,and
d

d—H (t)+28H (t)<h(t)H (t)+z(t),t>0,

where$>0,ze L ( +),h satisfies

loc
J:h(r)drSS(t—s)er,tzszO, m > 0.
Then
H(t)< ( o +J' | ) t>0.
Lemma3.2®! Let{S(t)}tZO be a semigroup on Banach Space (X,
invariant setin X ,for Vv >0,3T =T (v, B) such that
[S(T)x=s(T)y|<v+®; (xy),¥x, yeB,

|). Bis a bounded positive
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where®; : X x X — R for vVx, c B ,satisfies
limlim®; (x,x)=0.

k—o0 |-

Then{S(t)}_, is asymptotically compact in X .
Lemma3.3™! A dissipative dynamical system (S (t) X) has a compact global attractor A if and

only if it is asymptotically compact.
By Theorem2.2, the solution of problem(4)-(6)is well-posed in weak topological space, Thus, the

mapping can be defined S(t): X — X, i.e
S (t)(Ug: U7 =(u(t),u (t).,7'), t=0,
Where(u(t),ut (t),n‘) is the unique weak solution of problem(4)-(6),{S(t)}tzo satisfies the

properties of semigroups and is a locally Lipschitz continuous nonlinear C, —semigroup on X .
Lemma3.4: Assumed that the assumptions of Theorem2.2,Then the corresponding
semigroup{S (t)}t>0 of problem(4)-(6) has a bounded absorbing set B,in X.

Proof: The conclusion of lemma 3.4 can be obtained from the conclusion of lemma 2.1.
Let u isthe solution of problem (4)-(6),and

B, =US(t)B,

t>0
where

Bl={(UO,U1,UO)EXZ| ”ESRlZ}

Lemma3.5 Assumed that the assumptions of Theorem2.2,Then the corresponding
semigroup{S (t)}tZO of problem(4)-(6)is asymptotically compact in X .

Proof:Letu,v be two solutions of problem(4)-(6) as shown above corresponding to initial
data (uy, Uy, 7° ), (V. ,,£°) , respectively, Thenw =u—v, &' = ' — £* Satisfifies
W, +(—A)mw + ¢, (1) (=) W=, (1) (V" (u+V), VW)(=A)" (u+v)
[ u(s)(—A)" & (x,s)ds+ f (u)—f (v) =0,
é:t - _é:s + W,
(W(O)’Wt(0)7660(S))=(u0’u1'770)_(V0!V11§0)

1 m m
Where¢12(t)=§(¢(| 2)+¢(| 2))>O é, (t I¢( v u” +(1-7)
Taking H -inner product by w, in (26) and making use of assumptions(11),(11l), we have
1 d T m m
S I+ O™l 0 (09 (u+v) V7 w)’ |+

* m et 1 ’ m |2 m m ' m,|I? m m
+(_[0 n(s)(-a)"¢ (x,s)ds,wt):a(cl)( )(V u,v ut)+¢(V v )(V v,V vt))
i, (1) (V7 (U +V,), VW) (V" (u+V), VW) (27)

1 " m m m m m m
+E-[:¢ (r (1-7)[V"v 2)(r(V u,v ut)+(1—r)(V v,V vt))dr(v (u+v),v W)2
—(f (u)=F(v),w) <CH{|[V"u v )V - (F ()= £ (v).w),
Similarly, Taking H -inner product by w in (26) and making use of assumption (III) ,we get

(26)

)dz‘>0

+([V™
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| + 0y, (t)(Vm (u +v),Vmw)2
(28)

W” u)—f(v),w),

}cblz()

( ds W)<k
y
f

(|||)

)< CI (L fu v ) oo e < oo -+ € (o, + v, ) o o,

(f U)— f(v),w SCL 1+|U|+|V|)|W|2 dx < Clwf" +C(Jul, + V], ) [wl, < C[wf
(I, (o))" ¢ (x)ds,w )25 S s + 2
([ )7 £ (x)ss ) 2 [+ 22
(27)+8(28)
d
(0K ()=C (v ()"
WhenO< ¢ < mln{ —, —, } we obtain
1+/11 2+/11 2+ 1,
(&)l +[vo + <)
<H,(t) :E(”Wt” +dy, (t)”VmW”2 +dy, (t)(Vm (u +v),V"‘w)2 +||Ef||z +e[V™W, 2)+e(wt,w)

<[w + by VW[ + 2 (£) (V" (uv), Vow) + e ||§ ,
K, (t)= (1—8—8%1_““) "W, i +(%—s%j”§t”z +edy, (t)”VmW”2 +ed,, (t)(Vm (u Jrv),VmW)2

2 ] e O™ 48 (v (04), 770 ).
where a,=min {z, A"} then
K, (t)-a,H, (1)>0, (30)

Substituting (30)into(29),we have

%Hz(t)ﬂszz(t)SC'( VU, ()] +

V™w

(O H. (O)+Cw(b)", @1
By(8),we have
m (z')”dTSC( : v"

u (z’)”zdz'f (t-s)? s%(t—s)JrC ,

From lemma 2.1 and lemma 3.1, it is concluded that

w +[e] <c (||wl||2 +[vrw, [ +||g°||2)emzt +Cf e w(v) dr. (32)
Choose a big enough T to make

O Il -+ Jo v

Let®; ((Ug, Uy g ). (Vor Vi Gy ) Cj e ||W(1:)||2d1:,then

o+
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Fot all (U, U;, M, )» (Vo,Vy, Co ) € By We have

||S(T)(u0,ul,n0)—S(T)(vo,v1,§0)||£v+®T ((Ugtyimg ) (Vor 1. o))

by(ug,uf,my) = By.,and B, is a bounded positive invariant set, Then the solution (u",u/,n") of
problem  (4)-(6) is uniformly bounded in X ,moreover {u"} is bounded
inC([0,%0);V, )NC*([0,0);H).

Since V, — His tight embedding, There exists a sequence{uk“}which is strongly convergent
inC([0,T];H),and

Il(m !LFQ @, ((UCO’UEP nrk]o)'(ulnmulnli Mio )) =0,
Then we have {S (t)} __is asymptotically compactin X .

Lemma 3.5 is proved.

Theorem3.6 Assumed that the assumptions of Theorem2.2,Then the semigroup {S (t)}

t>0
possesses in X a global
attractor Awhich is connected.

Proof: By lemma 3.4 and lemma 3.5,(S(t),X) is a dissipative dynamic system and is

asymptotically compact, According to lemma 3.3, we know that there is a compact global attractor
A.
Theorem 3.6 is proved.

4. Exponential Attractor

Definition4.11*® Semi modules n() on Banach spaces X is called compact semimodules, If
for any bounded setB — X ,there is a sequence {x, } = B such that whenn,m — oo, n(x, —x,) —>0.

Definition 4.2 Set A, in complete metric space X is called exponential attractor of semigroup
{S(t)}.., If the following conditions are met

@A, isacompactsetin X;

@A,,, has finite fractal dimension in X ;

®A,, is a positive invariant set, i.e S(t)A, < A, forvt>0;

@A,,, attracts bounded sets in X with exponential rate,i.e there is a constanto > 0such that
for any bounded set B — X and anyt > 0 satisfy

dist, {S(t)B,A,,} <C(B)e™".

Lemma4.3® ™ Let B be a bounded closed set in Banach Space X . If mapping
F : B — B satisfies

(1) F Lipschitz continuous on B, i.e for Vu,,u, € B,3L > 0such that

|Fu, — Fu,| < Lfu,—u,|;

(2) There are compact semimodules n,(x),n,(x) in X ,and 30<6<1, K >0 such that
forvVu,,u, € B satifies

|Fu, — Fu, | < 0]ju, —u, ||+ K n, (u, —u, ) +n, (Fu, — Fu, ) |;

Then for Y« >0,6<(0,1-0) ,Positive invariant compact set A, < B with finite fractal
dimension:
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sup{F*B, A, .} =sup{dist(F*u, A, )} <q* k=12,
ueB
whereq=6+0 <1,and

-1 2 }é
dim, A, , s(ln 510) -[In m, {M]+K}

wherem, (R) is the maximum number of points(x;, y;) in product space X x X satisfying the
following conditions:

I+ |y <R?, nl(xi —xj)+n2(yi —yj)>1, i#]j,

i.e A, Iisthe exponential attractor of discrete dynamical system (Fk, B) :

Lemmad.4™! Let X,Y be metric space, If q:X —Y isa «—Hdlder continuous mapping, then

dim, {q(Q),Y}sédimf {Q.X}.

Theorem4.5 Assumed that the assumptions of Theorem2.2,Then the dynamical system
(S(t),X) has an exponential attractor A,,.

Proof: Differentiating for tin equation(1),letv(t) =u, (t) satisfies
v, + (—A)m v, +¢5(||V'“u||2 )(—A)m v+ 2¢’( 2)(Vmu, vTu,)(-A)"u
j g(s (t—s)ds+ f'(u)v=0,

Letn, =nv(x,s):j0 v (x,t-7)dz, (x,5)eQxR", t>0.(34)

By formal differentiation we have
M (X,8) = =14 (X, 8)+V, (X,1), (X,5)eQxR",t>0.(35)
Then equation (33) can be transformed into the following equivalent autonomous system:

v, +(—A)”" v +¢(||vmu||2)<—A)m w20 (|vulf ) (v, v ) (-a)
[ u( s)ds+f'(u)v=0, (36)
M = ~Ths + Ve ( s )eQxR+xR+, (x,t) e Qx[0,).

V™u

(33)

Taking H -inner product by v,+e&v in (36) and making use of assumptions
(1)—(Nr)and(7),we have

oM W R )||vmv|r—ezﬂ||vmv|r+% .
+25¢'( )(V u,v" v <¢( u| ) Vmu V™u,
(37)
—2¢( u||)VuVu)(Vmqu) (f( vv+gv)
o A R R e
where
Hy ()= (Iuff + o (vl )+ ) retvn),
Then
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2

%Hg(t)+K3(t)£C

V™ ’ +C|V"Vv

, (38)

V™,

% £¢o%
4™ 4 2, [

(o)Wl 7 + ! ) < Ha ) <l o[l o+

When0 < & <min {1,

AT

2
E

m

Ko (8) =5 [V 22w + o

o e o £
y 4

2
’
E

2

V| +

m,

V) za (Juf +o|v7ul

H
,— r,we get
) e

+2e0 [Vl ) (v
where a,=min {%m— 2¢,
K, (t)—a,H, (1) 20,

SO

%H3(t)+a3H3(t)£C

N | &

2

VTl , (39)

H,(t)+C

VT,

From lemma 3.1, we get

Wl + v + ]} <cet+c.

and

Julf +[vu |+ <c. @)

From lemma 3.4, we know that dynamical system(S(t),X) has a closed positive invariant
bounded absorbing set B, ,by(7)and(40),we have B, is bounded in V xV_ xE ,and for
any'y, = (Uo7 ) € By, ¥, (t) =S (1) y, =(u(t),u, (t).n') B, satisfies

Jou v+ [+l < @0

Defining operator:

F=5(T):B,—>B,

obviously FB, c B, ,and easily know F is a Lipschitz operator,

Taking H -inner product by w, +¢&w in (26),and making use of assumptions (III)

%HA(t)‘F”Vth (t)||2 <K, ()= (F(u)=f(v),w +ew), (42)

whene >0 is appropriately small,

1 m m
H, (0)=5 el + vl [} ) e (wow) 2 C ) ]+ [ w

“elr).
and
K, ==y, (1)(V"W, V™, ) =6y, (1) (V™ (u+V), VW, ) (V" (u+v), VW)
B TSI R B
<2 o

4
el)

AVARVY

vV™w

obviously
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(e

|(f (u)-f (v),vvt+sw)| < CIQ(1+|u|+|v|)|w|(|wt|+a|w|)dx
< Cwl(lwe ]+ &)+ © (lull, [l ol (o, + 2wl )~ (44)

b

Lvuf

Substituting (43)(44)into(42),we get
d 1 2

g MO+ 5[V ()] <CH. (1),

Using Gronwall inequality, we get

() de<cert|

2 oll2
o +T)

2
w||” +

o+

i.e F is a Lipschitz operator.
Foranyy,,y, €B, by(32) we have

IFy, —Fy |} <Cly, (¢ (&)} e +cj e u(t)-v(7)| dv
<62y, (t,)- || +Cm§3§ u(s)-v(s)|,

i.e

||Fyu _Fyv”x SeT yu (tO)_yv (tO)”X +Cn1(yu _yv)’

where

02=Ce ") n(y,-vy,)=max|u

to<s<T ”

Easily know n,(y, — Y, )is a compact semimodule in X .
According to lemma 4.3, there is an exponential attractor A, in discrete dynamical system
o) here F* =S (kT ). Let

A\exp_ U S( )Ak

0<t<T
Combined with[17],we getA,  is the exponential attractor of continuous dynamical system

(S (t) B, ) , Therefore, according to the definition of exponential attractor, there is « > 0,such that

dist, {S(t)B, A,,} <Ce™,t20,

In fact,
1) A, is positive invariant.

2). For any bounded B in X ,there exists t, >0 ,such that vt >t there holds S(t)B c B, ,then
dist, {S(t)B, A,, } <dist, {S(t-t;)B,, A, } <C(||B], )e™

And whent <t,

dist, {S(t)B, A, } <Ce“e™ <C(|B], Je™.

3). Define operator

Vi[O T]xA =B,V (ty,)=VY,(t)=S(t)y, Y, € A,

Foranyy,, Yy Yu, € Act,t,t, €[0,T | satisfy

V(6 v) - ()], <, <([7 s (=)

||V (t’ yul)_v (t’ yu2)|x = ||S (t) yul - S (t) yu2 X < C || yul - yu2||x !
i.eV is about tbeing%_ Helder continuous,and about Yy, being Lipschitz continuous,so

(r)”x dt

[ dr)z It —t,| <CJt,~t,|",
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A, =V {[O,T]x Ak}( The image of [0, T]x A inV )isacompactsetin X.

4). From lemma 4.4, we know that

dim, {A,,, X} <2+2dim, {A, X} <+o0.

According to the definition4.2 of exponential attractor, we get A, is the exponential attractor of
dynamical system (S (t), X ).

Theorem 4.5 is proved.
Note: theorem 4.5 shows that the global attractor A in theorem 3.6 has finite fractal dimension.
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